

Junior Cert Maths

Free Notes

Quadratic Equations

Quadratic Equations

Quadratic equations are equations of the form $ax^2 + bx + c = 0$.

To solve a quadratic equation we must firstly make sure our equation equals zero. For instance if $x^2 + 8x + 8 = -7$ we must bring -7 to the other side of our equation so as it equals 0 i.e. $x^2 + 8x + 15 = 0$

Once our equation equals 0 it can be solved by factorisation. We let both of our factorised terms equal 0 and solve for x

$x^{2} + x - 42 = 0$ (x - 6)(x + 7) = 0 x - 6 = 0 x + 7 = 0 x = 6 x = -7	$3x^{2} + 19x + 26 = 0$ (3x + 13)(x + 2) = 0 3x + 13 = 0 x + 2 = 0 3x = -13 x = -2 x = -13/3
$x^{2} + 7x - 44 = 0$ (x + 11)(x - 4) = 0 x + 11 = 0 x - 4 = 0 x = -11 x = 4	$6x^{2} - 29x + 30 = 0$ (3x - 10)(2x - 3) = 0 3x - 10 = 0 2x - 3 = 0 3x = 10 2x = 3 x = 10=3 x = 3/2
$2x^{2} - 15x + 27 = 0$ (2x - 9)(x - 3) = 0 2x - 9 = 0 x - 3 = 0 2x = 9 x = 3 x = 9/2	$x^{2} - 6x = 0$ x(x - 6) = 0 x = 0 x - 6 = 0 x = 0 x = 6
$12x^{2} - 7x - 45 = 0$ (4x - 9)(3x + 5) = 0 4x - 9 = 0 3x + 5 = 0 4x = 9 3x = -5 x = 9/4 x = -5/3	$2x^{2} + 18x = 0$ 2x(x + 9) = 0 2x = 0 x + 9 = 0 x = 0 x = -9

If a quadratic equation cannot be factorised we must use the quadratic formula

$$\mathsf{x} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

where a, b, c are taken from the quadratic equation $ax^2 + bx + c = 0$ Use your calculator to help you solve these types of quadratic equations.

Solve
$$x^{2} + 5x + 3 = 0$$

a = 1
b = 5
c = 3
 $\frac{-5\pm\sqrt{5^{2}-4(1)(3)}}{2(1)}$
 $\frac{4\pm\sqrt{(-4)^{2}-4(2)(-3)}}{2(2)}$
 $\frac{-5\pm\sqrt{25-12}}{2}$
 $\frac{4\pm\sqrt{16+24}}{4}$
 $\frac{-5\pm\sqrt{13}}{2}$
We Split our equation in two
 $\frac{-5\pm\sqrt{13}}{2}$
 $\frac{-5-\sqrt{13}}{2}$
Using our calculator we get
x = -0.7 and x = -4.3
Questions
1. Solve for x: $3x^{2} + 11x = 4$
 $3x^{2} + 11x - 4 = 0$
Page 3 of 8

(3x - 1)(x + 4) 3x - 1 = 0 x + 4 = 0 3x = 1 x = -4 x = 1/3x = 1/3 and -4

2. Solve for x $8x^2 - 14x + 3 = 0$

 $8x^2 - 14x + 3 = 0$

(2x - 3)(4x - 1)

 $\begin{array}{ll} 2x - 3 = 0 & 4x - 1 = 0 \\ 2x = 3 & 4x = 1 \\ x = 3/2 & x = 1/4 \end{array}$

x = 3/2 and 1/4

3. Find the roots of the equation $2x^2 - 7x - 6 = 0$ Give your answers correct to two decimal places

Use the quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$a = 2$$

$$b = -7$$

$$c = -6$$

$$\frac{-7 \pm \sqrt{(-7)^2 - 4(2)(-6)}}{2(2)}$$

$$\frac{-7 \pm \sqrt{49 + 48}}{4}$$

$$\frac{-7\pm\sqrt{97}}{4}$$

Split our equation into two parts

$$\frac{-7+\sqrt{97}}{4}$$
 $\frac{-7-\sqrt{97}}{4}$

Using our calculator we get

x = 4.21 and - 0.71

4(i). Solve the equation $x^2 = 3x+2$. Give your answers correct to two decimal Places

 $x^2 - 3x - 2 = 0$

Use the quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$a = 1$$

$$b = -3$$

$$c = -2$$

$$\frac{3 \pm \sqrt{(-3)^2 - 4(1)(-2)}}{2(1)}$$

$$\frac{3 \pm \sqrt{9 + 8}}{2}$$

$$\frac{3 \pm \sqrt{17}}{2}$$

Split our equation into two parts

 $\frac{3+\sqrt{17}}{4} \qquad \frac{3-\sqrt{17}}{4}$

Using our calculator we get

x = 3.56 and -0.56

4(ii)Hence, or otherwise, find value for p for which $p = 3\sqrt{p} + 2$ Give your answers correct to one decimal place.

From our previous equation $x^2 = 3x + 2$ x = 3.56 and -0.56

If we replace x with \sqrt{p}

 $\sqrt{p} = = 3.56 \qquad \sqrt{p} = -0.56$

If we test both of these values back into our equation $p = 3\sqrt{p} + 2$

we find that only 12.7 satisfies our equation p = 12.7

5. (i) Solve the equation $x^2 - 6x + 4 = 0$, giving your answer in the form of $a \pm b$, where a, b $\in N$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$a = 1$$
$$b = -6$$
$$c = 4$$

$$\frac{6 \pm \sqrt{(-6)^2 - 4(1)(4)}}{2(1)}$$

$$\frac{6 \pm \sqrt{36 - 16}}{2}$$

$$\frac{6 \pm \sqrt{20}}{2}$$

$$\frac{6 \pm 2\sqrt{5}}{2}$$

Split our equation into two parts

6+2√5	6-2√5
2	2

Dividing both equations across by 2 we get

 $x = 3 + \sqrt{5}$ $x = 3 - \sqrt{5}$

(ii) Hence, or otherwise ,find two values for p for which $(3 + p)^2 - 6(3 + p) + 4 = 0$

From our previous equation $x^2 - 3x + 4 = 0$ $x = 3 + \sqrt{5}$ and $x = 3 - \sqrt{5}$ If we replace x with 3 + p we get the given equation $(3 + p)^2 - 6(3 + p) + 4 = 0$ So x = 3 + p $p + 3 = 3 + \sqrt{5}$ and $p + 3 = 3 - \sqrt{5}$

 $p = \sqrt{5}$ and $p = -\sqrt{5}$

(iii) Show that the sum of the two values of p is zero.

$$\sqrt{5} - \sqrt{5} = 0$$

For more comprehensive Junior Cert Revision Notes Click Here.... <u>Junior Cert Maths Notes</u>