

Maths
Leaving Certificate
Ordinary Level

Past Exam Questions
Marking Scheme on
Area and Volume

Q7 2013 Paper One Section B

Two identical cylindrical tanks, A and B, are being filled with water. At a particular time, the water in tank A is 25 cm deep and the depth of the water is increasing at a steady rate of 5 cm every 10 seconds. At the same time the water in tank B is 10 cm deep and the depth of the water is increasing at a steady rate of 7.5 cm every 10 seconds.

(a) Draw up a table showing the depth of water in each tank at 10 second intervals over two minutes, beginning at the time mentioned above.

Time (s)	0	10	20	30	40	50	60	70	80	90	100	110	120
Tank A	25	30	35	40	45	50	55	60	65	70	75	80	85
Tank B	10	17.5	25	32.5	40	47.5	55	62.5	70	77.5	85	92.5	100

(b) Each tank is 1 m in height. Find how long it takes to fill each tank.

Tank A: 2 minutes 30 seconds

Tank B: 2 minutes

(c) For each tank, write down a formula which gives the depth of water in the tank at any given time. State clearly the meaning of any letters used in your formulas.

Tank A: $d = 25 + \frac{5}{10}t = 25 + \frac{1}{2}t$ where d is the depth in cm at time t seconds

Tank B: $d = 10 + \frac{3}{4}t$

(d) For each tank, draw the graph to represent the depth of water in the tank over the 2 minutes.

(e) Find, from your graphs, how much time passes before the depth of water is the same in each tank.

Answer: 60 seconds

(f) Verify your answer to part (e) using your formulas from part (c).

 $d = 25 + \frac{1}{2}t = 10 + \frac{3}{4}t \implies \frac{1}{4}t = 15 \implies t = 60 \text{ seconds}$

Question 5 (25 marks)

A solid cylinder has a radius of 10 mm and a height of 45 mm.

(a) Draw a sketch of the net of the surface of the cylinder and write its dimensions on the sketch.

Calculate the volume of the cylinder. Give your answer in terms of π .

$$V = \pi r^2 h = \pi (10)^2 (45) = 4500 \pi \text{ mm}^3$$

(c) A sphere has the same volume as the cylinder. Find the surface area of the sphere. Give your answer in terms of π .

$$\frac{4}{3}\pi r^3 = 4500\pi$$

$$\frac{4}{3}\pi r^3 = 4500\pi$$

$$\Rightarrow r^3 = \frac{4500 \times 3}{4} = 3375$$

$$\Rightarrow r = \sqrt[3]{3375} = 15 \text{ mm}$$

⇒
$$r = \sqrt[3]{3375} = 15 \text{ mm}$$

$$A = 4\pi r^2 = 4\pi (15)^2 = 900\pi \text{ mm}^2$$

Q9 2012 Ordinary Level Section B

Question 9 Part b

(b) Garden paving slabs measure 40 cm by 20 cm. The slabs are to be arranged to form a rectangular paved area. There are x slabs along one side and y slabs along an adjacent side, as shown.

(i) Write the length of the perimeter, in centimetres, in terms of x and y.

$$P = 2(40x + 20y)$$
 cm or $P = (80x + 40y)$ cm

(ii) The material being used for edging means that the perimeter is to be 64 metres. Find y in terms of x.

$$P = 64 \text{ m} = 6400 \text{ cm}$$

$$\Rightarrow 80x + 40y = 6400$$

$$\Rightarrow 40y = 6400 - 80x$$

$$\Rightarrow y = 160 - 2x$$

(iii) Find the value of x for which the paved area is as large as possible.

$$A = (40x)(20y)$$
= 800x(160 - 2x)
= 128000x - 1600x²

$$\frac{dA}{dx} = 128000 - 3200x$$

$$Let \frac{dA}{dx} = 0$$

$$\Rightarrow 128000 - 3200x = 0$$

$$\Rightarrow x = 40$$

(iv) Find the number of slabs needed to pave this maximum area.

$$y = 160 - 2x = 80$$
Number of slabs = $xy = 40(80)$
3200 slabs are needed.

Q5 2012 |Paper 2 Ordinary level

Question 5 (25 marks)

(a) The diagram shows a circle inscribed in a square. The area of the square is $16~{\rm cm}^2$.

$$l^2 = 16 \implies l = 4 \implies \text{radius} = 2 \text{ cm}$$

(ii) Find the area of the shaded region, in cm², correct to one decimal place.

Shaded area: $16 - \pi(2)^2 = 16 - 12.566 = 3.433 = 3.4$ cm²

(b) A solid wax candle is in the shape of a cylinder with a cone on top, as shown in the diagram.

The diameter of the base of the cylinder is 3 cm and the height of the cylinder is 8 cm.

The volume of the wax in the candle is 21π cm³.

(i) Find the height of the candle.

Volume of cylinder =
$$\pi (1.5)^2 8 = 18\pi$$

Volume of cone =
$$21\pi - 18\pi = 3\pi$$

$$\frac{1}{3}\pi r^2 h = 3\pi \Rightarrow \frac{1}{3}\pi (1.5)^2 h = 3\pi \Rightarrow h = \frac{9}{2.25} = 4 \text{ cm}$$

Height of candle: 8 + 4 = 12 cm

(ii) Nine of these candles fit into a rectangular box. The base of the box is a square. Find the volume of the smallest rectangular box that the candles will fit into.

Square base \Rightarrow 3 candles wide \times 3 candles deep.

Dimensions of base = $3(3) \times 3(3)$. Area of base of box: $9 \times 9 = 81 \text{ cm}^2$

Height of box: 12 cm

Volume: $81 \times 12 = 972 \text{ cm}^3$